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Static solitary waves as limits of discretization:
a plausible argument

B y Gá bor Domokos
Department of Strength of Materials, Technical University of Budapest,

H-1521 Budapest, Hungary

We investigate special limits of the classical Euler buckling problem, arguing that
the solution-family ‘imitating’ (without mass forces) the propagation of a dynamic
solitary wave cannot be obtained as a limit from Euler’s problem, only from its
discretized version. Although we can not prove this claim rigorously, we prove other
related statements that make the conjecture strongly plausible. Our results yield
access to some open questions related to the discretized problem; also they show
some new aspects of spatially chaotic behaviour.

1. Introduction

In this paper we will investigate special limits of the classical planar Euler buckling,
a boundary value problem (BVP) describing the behaviour of an elastic beam under
axial static force, discussed by Euler (1744) (cf. Love 1927). It is well-known that
the homoclinic solution of the corresponding initial value problem (IVP) provides a
spatially localized configuration (loop) that also solves the dynamical equation of the
elastic line and proves to be a solitary wave. The dynamics of flexible rods, yielding
solitary waves as solutions, is studied in detail by Coleman & Dill (1992), Maddocks
& Dichmann (1994) provide a variational characterization. Naturally, Euler’s BVP is
not capable of describing the propagation of this wave. In one possible BVP interpre-
tation (for alternative see §2) the homoclinic solution corresponds to infinite force
(instead of infinite length, as in the IVP) and the loop, shrinking to infinitesimal size,
is located exactly at the middle of the beam (at least for the first mode solution).
However, there exists a family W of BVP solutions, corresponding to the arbitrary
location of the infinitesimal loop, ‘imitating’ the propagation of the dynamical wave.
In this case the dynamics evolves amongst the set W of non-isolated static shapes,
generated by a continuous shift transformation. The only member of W that can be
obtained as a limit from Euler’s problem is the homoclinic solution itself. The paper
presents the conjecture, supported by a plausible argument, that all of W can be
reached as a limit of the discretized BVP.

The fact that the continuous BVP does not converge toW, pointing out the degen-
erate character of this BVP, is not very surprising. As demonstrated by Domokos &
Holmes (1993b), there exist arbitrarily small smooth perturbations of the bending
stiffness that result in drastic changes in the global bifurcation diagram, including
the appearance of arbitrarily high numbers of ‘parasitic’ solutions. These solutions
were already noticed in discrete analogues of nonlinear BVPs more than 15 years
ago, (cf. Bohl 1979; Beyn 1982; Peitgen & Schmitt 1981). Peitgen et al. (1981) call
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2100 G. Domokos

these solutions ‘numerically irrelevant’ (NIS). It is true that from the point of view of
numerical computations they merely present an embarrassment, however, Domokos
& Holmes (1993a) showed that parasitic solutions can be important and relevant
in mechanical systems, and not only in discrete ones (Domokos & Holmes 1993b).
This idea is carried further in this study: by using some results of Bohl (1979) and
Peitgen et al. (1981) we investigate the relationship between limits corresponding to
parasitic solutions and show the direct mechanical meaning of these limits.

The degeneracy (or structural instability) of the Euler BVP is a result of a high
degree of symmetry. By perturbing the BVP one can obtain more generic cases,
which, in turn, might prove to be vastly more complex than the original, classical
problem. A special perturbation is discretization, either in the sense of discretizing
the ordinary differential equation (ODE) by a step-by-step integrator, or, in the sense
of discretizing the mechanical problem to a sequence of equal rigid links, coupled by
linear torsional springs. The investigation of Domokos & Holmes (1993a) showed that
the two discretizations can be made equivalent, moreover, the resulting map is none
other than the standard map. Domokos & Holmes (1993a) investigated the extremely
rich structure of the discrete BVP, proving the existence of parasitic solutions (not
present in the continuous model) and characterizing them.

In this paper this study will be pursued further with the specific goal of explaining
the solution family W as a limit. The key idea is that in contrast to the continuous
BVP which possesses one parameter (the force), the discrete one has a second one: the
number of links. With suitable adjustment of these two parameters one can obtain
several different limits, two of which, H and C, will be explicitly demonstrated.
Moreover, we will prove that H ⊂ W ⊂ C, suggesting in a plausible way that W
itself is a special limit of the discrete BVP.

Besides supporting this argument, the tools and results of the paper help to answer
a long-standing question: as already reported by Gáspár & Domokos (1989), the dis-
crete BVP exhibits different behaviour for odd and even numbers of links. Apparently
the investigation of the limits provides the key to this question.

After reviewing earlier results and stating the problem in §2 we proceed to the new
material. In §3 we introduce special limit sets (not discussed earlier) and formulate
our conjecture about wave-like solutions. The discrete problem is scrutinized in §4,
leading to observations supporting the conjecture. Finally, in §5 we use these obser-
vations to introduce the labelling of branches and to explain the odd–even paradox.
We also point out the relationship to Markov processes and draw conclusions.

This paper is aimed towards engineers, the arguments appeal to mechanical intu-
ition and are not rigorous in the strict analytical sense. We do not claim mathematical
originality for the ‘observations’, however. We believe that they are relevant from the
engineering point of view. Whenever possible we will refer to mathematical results
and discuss their connection to the investigated specific mechanical problem. The
emphasis is on the mechanical interpretation of non-trivial mathematical concepts,
such as chaotic and random behaviour, convergence to degenerate limits. We hope
that this mechanical illustration can contribute to deeper understanding.

2. Euler buckling and its limit set H
We recall the classical planar Euler buckling problem (cf. Euler 1744; Love 1927),

corresponding to a simply supported slender linearly elastic rod of length L with
uniform cross section and bending stiffness EI (E denoting Young’s modulus and I
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Limits of discretization 2101

Figure 1. Euler’s buckling problem

denoting the moment of inertia of the cross section), infinite axial and shear stiffness,
loaded by an axial force P . Euler (1744) provided an essentially complete analysis
of this classical problem, which we summarize below. As is customary, we model
the (deformed) shape by a plane curve (x(s), y(s)) parametrized by the arc length
s ∈ [0, L] (figure 1).

If the load line passes through the supports then there always exist solutions for
which the vertical reaction forces vanish identically, although the degenerate case
x(L) = 0 (discussed by Maddocks (1984)) admits others. We will return to this
special case in §5. By restricting ourselves temporarily to the former non-degenerate
solutions (V (0) = V (L) = 0), the equilibrium equations may be reduced to the single
second order ODE in the slope α = arctan(dy/dx):

α′′ + λ sinα = 0, (2.1)

where ()′ denotes (d/ds) and λ = (P/EI). The appropriate boundary conditions, for
non-zero load λ, are zero moments

α′(0) = 0 = α′(L). (2.2)

As Kirchhoff (1859) pointed out, the elastica equilibrium problem is analogous
to the pendulum equation (replace λ = P/EI by g/l in (2.1)); in fact the three-
dimensional elastica is analogous to the more general heavy rigid body (top) problem
in dynamics (cf. Love 1927; Mielke & Holmes 1988), of which the pendulum is a
special case. This analogy suggests that results for the dynamic initial value problem
can be applied to the static boundary value problem and vice versa: a strategy which
has been used in studying continuous models (cf. Mielke & Holmes 1988; Thompson
& Virgin 1988; ElNaschie 1990). We remark that the λ → ∞ limit is equivalent to
the L → ∞ limit in the BVP. The latter one is less natural from the engineer’s
point of view (in a physical experiment λ is more easily varied than L), however,
mathematically the two limits coincide. The L→∞ limit is adopted by Beyn (1990).
This limit can be obtained by rescaling the arclength s by S = as and letting a→∞.
By introducing the new variable S into (2.1) and using (dα/dS) = (dα/ds)(ds/dS) =
(α′/a); (d2α/dS2) = (α′′/a2), one arrives at α′′/a2 + λ sinα = 0, which, in turn, is
equivalent to the λ→∞ limit. The latter will be investigated below.

Equations (2.1) and (2.2) can be solved exactly using Jacobian elliptic functions.
For each fixed load P > n2π2EI/L2, in addition to the trivial solution α = 0, there
are n pairs of buckled states containing 1, 2, . . . , n half waves, respectively, which
may be uniquely characterized by the angles α(0) = ±α1(P ),±α2(P ), . . . ,±αn(P )
with 0 < αn < · · · < α2 < α1 < π. This statement is perhaps more easily understood
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2102 G. Domokos

Figure 2. The solutions of the BVP in the physical and phase space and on the global
bifurcation diagram.

via the phase portrait of the associated first order system, obtained by introducing
the auxiliary variable y = −α′/λ

α′ = −λy,
y′ = sinα.

(2.3)

This system is Hamiltonian and possesses the first integral

− 1
2λy

2 + cosα = cosα(0) = const. (2.4)

The level sets of (2.4) are nested periodic orbits of (2.3) whose period T increases
monotonically from 2π/

√
λ to infinity as α(0) varies from 0 to π. (In fact T =

(4/
√
λ)K(sin( 1

2α(0))), where K is the complete elliptic integral of the first kind:
recall that K(0) = 1

2π and K(k) ≈ 1
2 ln(16/1− k2) as k → 1.) Solutions to the

boundary value problem (2.1)–(2.2) are arcs of length L contained in those level
sets having periods which are divisors of 2L. From the monotonicity of T it is clear
that these 2n+ 1 orbits, including the trivial one, are the only solutions to the BVP.
This fact, although with different tools, was already demonstrated by Euler. Figure 2
demonstrates three buckled shapes with the corresponding arcs in the phase plane
and the global bifurcation diagram for α(0) > 0.

The homoclinic solution (dashed line), connecting the two hyperbolic fixed points,
is reached in the BVP as λ→∞. As intuitively expected, one can show by manipulat-
ing complete and incomplete elliptic integrals that x(L)→ −L as λ→∞. (The lim-
ited length of this paper prohibits the demonstration of these calculations, however,
they do not support any new claim.) Thus the n loops of the nth buckling mode each
shrink to infinitesimal size, the beam becomes ‘straight’ in the everted limit state.
Simultaneously, in the nth mode, as λ→∞, α′(iL/2n)→∞, (i = 1, 3, . . . , 2n− 1),
resulting in n discontinuities of magnitude 2π in α(s). Consequently, the homoclinic
solution can be regarded as a discrete family Hn of non-continuous solutions, the
nth member Hn of the family being the λ → ∞ limit of the nth buckled mode of
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Limits of discretization 2103

the continuous problem

Hn(s) = kn(s)π, s ∈ [0, L], (2.5)

where

kn(s) =

{
−1, if 1 < [(2ns/L) mod 4] 6 3,

1, otherwise.
(2.6)

We remark that the functions kn are very similar to the Walsh series wn introduced
by Walsh (1923). In fact, for n = 2i (i = 0, 1, . . .) kn(s) = wn(s/L). The functions
Hn form the homoclinic solution set H = {Hn} (n = 1, 2, . . .).

3. The solution sets C and W
Let us now turn back to equations (2.1) and (2.2). Substituting EI = 0 (equivalent

to λ =∞) yields for P > 0 the trigonometric equation

P sinα(s) = 0, (3.1)

to which the solution set C belongs

C = {k(s)π}, (3.2)

where
k(s) ∈ {0,±1,±2, . . .}, s ∈ [0, L]. (3.3)

In plain English, the elements of C are α(s) functions that can have an arbitrary num-
ber of discontinuities in α(s), at arbitrary locations, the only restriction being that,
away from discontinuities, α(s) remains an integer multiple of π. This huge set, of
cardinality greater than the continuum (its cardinal number is ℵ2, as Fraenkel (1923)
demonstrates (p. 47, p. 86), cf. also §5 c) contains many interesting subsets. One of
them is the already discussed homoclinic solution set H ⊂ C; another interesting
one-parameter subset W1 ⊂ C is given by (3.2) and

k(s) =

{
1, if 0 6 s 6 s0,

−1, if s0 < s 6 L.
(3.4)

The solution setW1 could be regarded as the quasi-static image of a single propagat-
ing solitary wave since the elements of W1 represent the (infinitesimal) homoclinic
loop at arbitrary locations. Similar sets Wn (with n parameters) can be constructed
in a similar manner as straightforward generalizations of the functions Hn, for the
representation of n alternating, simultaneous loops at arbitrary locations. The union
of the solution sets Wn will be denoted by W.

The interest in the set W is not purely academic. Imperfect subsets of W1 can
be observed in a physical experiment, as we stretch an elastic wire, enforcing a
loop. Although this configuration is not stable in the plane (cf. Maddocks 1984),
it can be stabilized by the contact force. One can observe that the location of the
loop is not uniquely determined; as long as it is sufficiently small compared to the
length of the wire, it can be moved back and forth in a range around the midpoint,
without violating the boundary conditions. The same phenomenon can be observed
in numerical experiments: here the continuous beam is replaced by a sequence of
N rigid links coupled by linear springs (for details see the next section). In this
model, instead of having a unique loop fixed at the middle, large numbers of adjacent
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Figure 3. Imperfect subset of W1 emerging in a numerical experiment (P = 493.48, N = 120
elements, 59 solutions).

similar solutions appear, which also satisfy the boundary conditions. An example is
illustrated in figure 3.

As we can observe, the solutions in W are physically and numerically relevant.
The illustrated numerical example presents a version of W1 that is imperfect in the
sense that both λ and N are finite (but large) instead of infinite, as in the perfect
case. These imperfections are manifested in three ways:

(i) instead of a continuum of solution it contains only a finite number;
(ii) the distance between neighbouring solutions is finite instead of infinitesimal;

and
(iii) the shape of the solutions is not identical (only very similar) and not identical

with the homoclinic loop, either.
We remark that the asymmetry of the illustrated shapes is also a consequence of

the imperfection: λ is finite.
It is natural to conjecture that these imperfections can be reduced as the parameter

λ and the number N of links increases, thus, in the limit W1 can be obtained. This
prompts the formulation of

Conjecture 3.1. There exist two functions λ(t) and N(t) describing the dis-
cretized model with solution set D(λ,N), such that t → ∞ implies λ,N → ∞ and
D(λ,N)→W.

In the next section we will not prove exactly this claim, however, we will show
that the larger set C (W ⊂ C) and the smaller set H (H ⊂ W) can both be obtained
as special limits of D: in this way we make our conjecture plausible (Polya 1968).

4. The limit sets of the discrete model

In the first part of this section we will define and describe the discrete model,
reviewing briefly parts of Domokos & Holmes (1983), to which we refer for more
details. The discrete model can be defined either as a discretization of the ODE
(2.3), or as a mechanical discretization of the beam, resulting in a sequence of rigid
links coupled by linear torsional springs. In the former case a simplectic integrator
is preferable (cf. Marsden et al. 1991), defining the area preserving map

αi+1 = αi − λlyi+1, yi+1 = yi + l sinαi. (4.1)

Besides being perhaps the simplest such recursive algorithm for numerical solution of
the initial value problem associated with (2.3), (4.1) also proves to be the equilibrium
condition for the mechanical discretization (see figure 4). Each of the N rigid links are
of length l = L/N , the torsional springs have stiffness EI/l at each joint. Solutions
of (4.1) satisfying the discrete boundary conditions

y0 = 0 = yN , (4.2)

not only provide approximations to the exact solutions of the continuum BVP (2.1)–
(2.2), but are themselves exact solutions of the discrete mechanical problem with N
links.
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Figure 4. The mechanical interpretation of the discretization.

Figure 5. Bifurcation diagram of the discrete model for N = 12.

Equation (4.1) can be turned by a simple linear transformation into the stan-
dard map which has been extensively studied as being perhaps the simplest two-
dimensional map providing chaotic solutions. The bifurcation diagrams for the dis-
crete model (4.1)–(4.2) display a radically different structure from that of the con-
tinuous problem (2.2)–(2.3). As an example we present the N = 12 case in figure 5.

As it is apparent from the figure, besides the primary buckled modes (correspond-
ing to the modes of the continuous model), a large number of other solutions appear
in the discrete problem which we call parasites. It is a natural question to ask from
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2106 G. Domokos

where these parasites originate, how can they be organized, and, as perhaps most
relevant to our present subject, where do they converge as λ→∞.

The origin of the parasites was already clarified by Bohl (1979). Domokos & Holmes
(1993a) showed the mechanical relevance of parasites by using properties of the
standard map. In addition, we characterized asymptotic behaviour for large λ, but
only for the primary branches. Finally, we showed that as λ increases, the number
of parasitic solutions in each mode grows beyond any finite number.

The discrete BVP (4.1)–(4.2) has two parameters, λ and N , so the solution set
can be written as D(λ,N). Fixing λ = λ0 and letting N → ∞ is equivalent to
applying an integrator with decreasing stepsize: standard ODE theory guarantees
the convergence to the continuous BVP (2.2)–(2.3). After reaching that limit one
can let λ0 →∞. As we saw in the previous section, the continuous model converges
to the homoclinic solutions. This consideration can be summarized for later reference
as follows.

Observation 4.1. limλ→∞{limN→∞[D(λ,N)]} = H.

If we interchange the two limits, the result is more surprising. We can formulate
the following.

Observation 4.2. limN→∞{limλ→∞[D(λ,N)]} = C.
As a first step, we deal only with the λ → ∞ limit at constant N . This limit is

also interesting from the physical point of view: it will inform us on the asymptotic
behaviour of the bifurcation diagrams like the one illustrated in figure 5. The solution
set CN corresponding to this limit is the discrete version of C and is defined as

CN = {kiπ}, (4.3)

where
ki ∈ {0,±1,±2, . . .}, i ∈ {0, 1, . . . , N − 1}. (4.4)

Our (reduced) claim is formulated as follows.

Observation 4.3. limλ→∞[D(λ,N)] = CN .

The mechanical content of this observation is confirmed by engineering intuition:
as we pull with increasing force at the endpoints of the linkage, the slope of each
individual member decreases, and in the limit the links are collinear with the line
of action of the acting force. The individual solutions contain springs that went
through an unspecified number of kπ rotations. Visualizing this limit is also helpful
in understanding the origin of parasites: at a slight release from the infinite load
the springs start an unwinding process, leading to the abundant solution structure
illustrated in figure 5. Observation 4.3 is not new from the mathematical point of
view, the λ→∞ limit of the discretized BVP was investigated by Bohl (1979) and
Peitgen et al. (1981). The fact that each (unbounded) branch of the BVP converges
to an element of CN is proven in remark 2.4 of the latter work. The converse, i.e. that
to each function in CN one branch converges, is demonstrated by Bohl (1979) (cf. also
Peitgen et al. (1981), corollary 2.5). We remark that these results could be obtained
directly by an application of the implicit function theorem to (4.1), rewritten as a
three-point discretization of (2.1).

In order to support observation 4.2 one further step is required: the N →∞ limit
of CN is a purely geometric construction: by letting N →∞ the point set defined by
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Figure 6. Segment between points on load line.

the discrete model becomes dense in the continuum, in this sense limN→∞ CN = C
(cf. §5 c).

The preceding considerations were rather simple, on the other hand, they rely on
deeper mathematical results. We are led to the conclusion the sets H and C can
both be obtained as special limits from the discretized BVP. The former is the set of
homoclinic solutions to which the continuous model converges; the latter is a larger
set, obtained by substituting λ = ∞ explicitly into the continuous model. The set
W, containing the quasi-static version of solitary wave propagation, is contained in
C; meanwhile it contains H as a subset: H ⊂ W ⊂ C. These facts support, in a
plausible way, conjecture 3.1, stating that W itself can be constructed as a limit of
D(λ,N). (For more details see §5 c.)

(a ) Additional mechanical arguments and generalization
As mentioned before, the claim of observation 4.3 is supported by mathematical

results. Nevertheless, we will provide an additional mechanical argument. This rea-
soning not only provides a better intuitive insight, it also yields access to mechanically
more relevant generalizations which cannot be obtained from the cited mathematical
results. The generalization to non-uniform discretizations will be used in §5 d.

Observation 4.3 can be decomposed into two statements which we will prove sub-
sequently.

(1) Each branch of the discrete BVP (4.1)–(4.2) either terminates at finite λ, or
converges to an element of CN , defined in (4.3)–(4.4).

The idea of the mechanical proof is to decompose the discrete BVP into a series
of segments, starting and ending where the structure intersects the load line (these
points need not coincide with the joints). We will show for each of these segments
that a finite upper bound valid for all relative angles exists, and via this upper bound
the convergence to an element of CN can be shown.

We regard a segment between two intersections with the load line, so yi do not
change sign along the segment (without loss of generality, we will assume yi > 0)
and let λ = λ0 <∞ (see figure 6).

According to (4.1), relative angles ∆αi = αi − αi−1 at any intermediate hinge do
not change sign along the segment, either. The total relative angle ∆α(λ0), mea-
sured between the two end-links of the segment can be computed as the sum of all
intermediate relative angles. As we move along the branch, neither of the end-links
can rotate by more than π, otherwise it would become collinear with the load line
and the solution would become the trivial one. (Domokos & Holmes (1993a) prove
that there are only N − 1 bifurcations from the trivial solution, corresponding to
the primary branches. Consequently, none of the branches can return to the trivial
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Figure 7. The strip of width l containing the intervals δȳi.

solution.) The limited rotation at the end means that ∆α is bounded from above:
∆α 6 ∆α(λ0) + 2π. This implies the same finite upper bound for all ∆αi, since we
have ∆αi < ∆α. As λ→∞, this upper bound enforces via (4.1) yi → 0, sinαi → 0,
and, consequently αi → kiπ. Since the structure can be always decomposed into a
sequence of such segments, we have proved our claim for all i ∈ {0, 1, . . . , N − 1}.
(We remark that as λ increases, the length of the investigated segment might change
since joints might pass through the load line. However, as they do so, the moment
(and thus the relative angle) vanishes; consequently the new link belonging to the
segment inherits its absolute angle from the previous one smoothly and thus our
considerations are not affected.)

After proving that each branch (not terminated at finite λ) converges to an element
of CN we proceed to the next part of observation 4.3:

(2) For any given function in CN (defined in (4.3)–(4.4), there exists at least one
branch of the BVP (4.1)–(4.2) that converges to the given function.

According to (4.3)–(4.4), a function contained in the discrete limit set CN is defined
by a sequence of integers ki; i ∈ {0, 1, . . . , N − 1}, from which the new sequence
k̄i = ki+1 − ki; i ∈ {0, 1, . . . , (N − 2)} can be obtained. Let

kmax =

{
max{k̄i}, if max{k̄i} > 0,
0, otherwise,

(4.5)

and

kmin =

{
min{k̄i}, if min{k̄i} < 0,
0, otherwise.

(4.6)

We choose
λ0 = π(kmax − kmin + 2)/l2 (4.7)

(recall that l = L/N) and define a sequence of intervals

δȳi = [π(k̄i − 1)/(lλ0), π(k̄i + 1)/(lλ0)]. (4.8)

Our choice (4.7) of λ0 ensures that all intervals lie within a strip of width l (see
figure 7), containing the load line.

Now we will show that there exists a solution of (4.1)–(4.2) such that for every i,
yi ∈ δȳi and this solution converges to the prescribed limit function αi = kiπ. We
construct the solution at λ = λ0 by induction. Let α0 go through a complete period:
y1 will cover the interval [−l, l] twice, also it will move through δȳ1 twice. From the
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corresponding two intervals of α0 we pick the one that is closer to the prescribed
πk0, let us denote this interval by ∆α1

0. In the next step we let yi travel through δȳ1:
the second link will describe a complete circle, y2 will move through δȳ2 twice. From
the corresponding sub-intervals of δȳ1 we pick the one (denoted by δȳ2

1 )that fixes α1
closer to the prescribed πk1. As we varied y1 inside δȳ1, α0 moved within ∆α1

0. Since
δȳ2

1 ⊂ δȳ1, the corresponding interval ∆α2
0 ⊂ ∆α1

0. As we proceed further, we obtain
a nested sequence of intervals ∆αi0 ⊂ ∆αi−1

0 for α0 and δȳij ⊂ δȳi−1
j for each yi,

finally the value yN = 0 is fixed by the boundary condition (4.2) and thus it specifies
a single point inside the last (smallest) interval. After constructing this solution for
λ = λ0, we let λ0 → ∞. The width d of the strip can be expressed by using (4.7)
d = π(kmax − kmin + 2)/(lλ0), and as λ0 →∞, d→ 0 and the same holds for all δȳi
intervals, so, finally yi → 0 and αi → kiπ. Thus we demonstrated one branch that
converges to a prescribed function in CN .

This mechanical argument supports observation 4.3. Now we will show that it can
be readily generalized for more generic mechanical systems.

The choice of non-uniform mesh (unequal length li for the links) does not change
the argument for statement (1). In the argument for (2) we have to consider that
the stiffness ci of the ith spring can be derived as ci = 2EI/(li + li+1), li and
li+1 denoting the length of the adjacent links. We have to choose the spring with
maximal (resp. minimal) moment. (The uniform mesh produced equal stiffnesses ci =
EI/l, so maximal moment coincided with maximal relative rotation.) Accordingly,
in equations (4.5)–(4.6) and (4.8) the sequence k̄i has to be replaced by k̄ici, in (4.7)
l has to be replaced by lmin = min{li}; otherwise the argument is not affected by
the choice of non-uniform discretization. This means that the same simple limit is
obtained for all discretizations.

Physical nonlinearity of the springs can be considered in a similar manner: the
sequence k̄i has to be replaced by m̄i(k̄i), where mi is an a priori given function,
denoting the moment in the ith spring as a function of the relative angle. The result-
ing limit behaviour is the same as in the case of linear material behaviour, as long
as the functions mi are strictly monotonic and the first derivative remains finite.

5. Related issues, discussion and conclusions

(a ) Branch labels
The argument for statement (2) actually shows more than the original statement,

which claimed that there exists at least one branch converging to a given function
in CN . According to the argument this branch is uniquely defined; thus the map
defined by our argument has a mutual one-to-one correspondence between branches
going to infinity and the functions in CN . The latter ones are completely described
by the integer string CN = {ki}, i ∈ {1, 2, . . . , N}, which could be used to identi-
fy all infinite branches uniquely. In previous statements we excluded branches that
terminate at finite λ (either at saddle-node or pitchfork critical points). However,
numerical evidence indicates that no such branches exist. Although we do not for-
mulate an explicit conjecture, we remark that the unique CN labels probably apply
to all branches.

From the mathematical point of view, CN is an infinite set, since the constants
ki (cf. equation (4.3)) can have arbitrary integer values. However, from the physical
point of view, two angles are indistinguishable if their difference is a multiple of 2π.
In the case of finite λ, the distance y could serve as a distinction between two nodes
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whose angles differ by 2kπ; however, in the limit set CN , belonging to λ =∞, we have
yi = 0 identically. Multiples of 2π could be also ‘recognized’ by the stored energy,
however, the λ→∞ limit can be interpreted by letting the flexural rigidity EI → 0,
so the energy difference in the links also disappears in the limit. This means, that
from the physical point of view we have to take all solutions in CN modulo 2π. The
resulting set BN is defined by

BN = {biπ}; bi ∈ {0, 1}; i ∈ {0, 1, . . . , N − 1}. (5.1)

where the binary integers bi can be determined from the corresponding elements of
CN as

bi = |ki|mod 2.
BN is (as opposed to CN ) finite, in fact, it is equivalent to the set of all binary

strings of length N , so it has exactly 2N elements. To each element of BN an infinite
set of elements in CN belong. We can regard the elements of BN as infinite classes in
CN . Similarly to the labels CN we define the binary labels BN = {bi} which will prove
to be useful when organising the rather complex bifurcational structure of the BVP
(4.1)–(4.2). Although the number of distinct binary labels grows rapidly with N , it
is still a fixed finite number for all values of λ, as opposed to the number of branches
(and the unique CN -labels), which grow to infinity. Each physically distinguishable
limit solution of the N -link discrete BVP is uniquely characterized by a binary label
BN (cf. the upper part of figure 8: here all physically relevant 16 limit solutions of
the four-link BVP are characterized by 24 labels.)

(b ) The mechanics of Markov chains
One of the most attractive points of this study is that some of the seemingly

abstract limit sets have a direct mechanical analogue. This is perhaps most easily
understood in the case of BN that can be viewed as the solution set of a chain
consisting of rigid elements, coupled by frictionless hinges with zero flexural rigidity.
The chain is subjected to a single axial end load. In sharp contrast to the discrete
elastic structure, the shape of the chain as an IVP cannot be described by a recursion
formula; at each node a binary ambiguity enters. (Each element can be either in
tension or in compression, independently of the previous one.) In other words: the
shape of the chain (as an IVP) is not determined uniquely by the initial conditions;
rather, it can be viewed as a (binary) random walk, perhaps the simplest case of a
discrete Markov process, also called (independently from the present application!) a
Markov-chain.

As mentioned earlier, Domokos & Holmes (1993a) we showed that the recursion
formula for the elastic linkage is (under a linear transformation) identical with the
standard map, which is known to exhibit chaotic solutions. The chaotic dynamics
of the standard map lie at the core of the complex bifurcation diagrams for the
BVP (cf. figure 5). We can regard the abundant appearance of parasitic solutions
as a manifestation of (spatial) chaotic behaviour in the BVP. The characteristic of
this behaviour is that, although deterministic (described by the recursion (4.1)), it
exhibits random-like properties. The latter ones can be rigorously formulated only
for infinite trajectories (IVPs); however, their presence is also apparent in the finite
domain (BVP) as we look at figure 5. Our present study showed that the limit of
this behaviour is a random process. Consequently, chaotic dynamics can be either
viewed as an infinitely complex, deterministic system, or, equivalently, as the imper-
fect (perturbed) version of a random process. In our case the bending stiffness EI
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Figure 8. The limit behaviour of the N = 4 linkage: 24 binary chains.

could serve as a perturbation parameter and we were in the very fortunate situation
to demonstrate this random limit as a mechanically meaningful system (chain). Sim-
ilar (degenerate) random processes might be at the core of other chaotic systems;
however, they might not have a direct mechanical interpretation. The appeal of this
approach is that the apparently complex behaviour shown in figure 5 boils down to
a startlingly simple process. This can be visualized by a rescaling of the parameter
λ, bringing λ =∞ into the finite range: we let λ = tan(u) (P = sin(u), EI = cos(u))
and plot the [α0, u] diagram: as u→ 1

2π we have λ→∞. Such a diagram for N = 4
is illustrated in figure 8, supplemented with the physical shape of the 24 = 16 limit
configurations. As mentioned before, uniqueness is violated in the λ→∞ limit, so 8
of the binary chains correspond to (α0, u) = (0, 1

2π), and other 8 to (α0, u) = (π, 1
2π).

This result supplements nicely the findings of Domokos & Holmes (1993a). The lat-
ter referred only to the limit behaviour of the primary branches and claimed that
α0 → 0 or α0 → π as λ → ∞, which is in perfect accordance with the concept of
binary chains. Our present study shows that not only the primary branches (but all
branches) and not only the first angle (but all angles) converge to 0 or π.
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(c ) Cardinal numbers and Brouwer’s point of view
The construction of the limit in observation 4.2 could be mapped onto the mechan-

ical construction of frictionless chains with decreasing link-size. This intuitive argu-
ment guarantees that the limit obtained by our construction falls within the frame
of intuitionistic mathematics, pioneered by Poincaré and Brouwer. According to the
latter, the continuum can be regarded only as a whole (‘matrix’), and not as an
assembly of individual elements (cf. Brouwer 1975).

As observed in §3, the set C has the cardinal ℵ2, which is even greater than the
cardinal ℵ1 of the continuum. Thus, C can never be reached directly in any limit
starting from a finite set. The limit that we constructed is only a denumerably
infinite set C∗ ⊂ C with cardinal ℵ0, and could be regarded as the intuitive (or,
intuitionistic) version of C. One would expect C∗ to be dense in C, however, this is
not the case. It is an interesting question from the engineer’s point of view, in which
sense C is approximated by C∗. Similarly, since W has the cardinal of the continuum
(ℵ1), it can not be reached in any intuitive limit (starting from a finite set), only a
denumerably infinite, subset W∗. In this case the density does not present difficulty.
Neither of these problems arise in the case of H, which is by its definition, (2.5)–(2.6),
denumerably infinite.

We did not introduce these considerations earlier since they do not affect the
essence of our plausibility argument. The ordering H ⊂ W ⊂ C applies also for
the constructed (denumerable) limits: H ⊂ W∗ ⊂ C∗. These set-theoretical problems
related to mechanical discretization became apparent in our approach because the
degree N of discretization appeared in the cardinal number of the solution sets.
Otherwise, if the number of solutions does not depend on the discretization, the gap
in the cardinal numbers between the approximated set (continuum) and the limit of
approximation (denumerable), although still present, is less disturbing. The problems
discussed here originate in the choice of the continuum as a convenient mechanical
model. It serves this purpose well as long as it is not regarded as a set consisting of
individual elements. This approach is not only rejected by the intuitionists, it is also
alien to mechanics, a discipline based largely on intuition.

(d ) Stability and the odd-even paradox
The idea of the inelastic chains casts some light onto the stability of the large

number of parasitic solutions appearing in figure 5. It is a natural question to ask
whether any, or how many, of these solutions are physically relevant, i.e. stable? The
individual study of the solutions is out of question, however, in §5 a we assigned
binary labels to each solution. These labels describe the shape of the inelastic chain
to which the solution converges. Without detailed argument, appealing to simple
experimental intuition, we claim that such a chain cannot be in stable equilibrium if
any of the links are compressed. On the other hand, if all elements are in tension, the
chain is stable. This means that, at least in the λ→∞ limit, solutions with binary
label BN = {b1, b2, . . . , bN} = {1, 1, . . . , 1} become stable. Although this applies to
only one of the 2N binary classes, a single class contains infinitely many solutions.

These considerations lead further, to the (partial) answer to an old-standing para-
dox about the nth primary mode of the N -link discrete model: as already reported
by Gáspár & Domokos (1989): secondary pitchfork bifurcations from the N − 1 pri-
mary branches can be always observed if N/n is an even integer, on the other hand,
never observed if N/n is an odd integer. In the case when N/n is not an integer, no
specific conjecture was formulated (cf. figure 5: on lowest branch N/n = 12

1 = 12, sec-
ondary pitchfork clearly visible, on fourth mode branch N/n = 12

4 = 3, no secondary
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pitchfork can be observed). The question could be generalized in the following form:
determine the number b of secondary bifurcations on the nth primary branch of the
N -link model. We can not deliver a complete answer; the question still remains open,
the complete solution might require deeper tools than ones applied in this paper.

On the other hand, using the concept of binary chains we can determine the
minimal value bmin.

Observation 5.1. The minimal number bmin of secondary bifurcation on the nth
primary branch of the N -link model, can be expressed as bmin = Nf(n/N), where

f(t) =

{
(1/q), if t = (p/q), p, q are relative primes and q is even.
0, otherwise.

Simultaneously we formulate the following.

Conjecture 5.2. b = bmin for all (N,n).

Argument for observation 5.1. In the continuous problem (2.2)–(2.3), as the
nth primary branch bifurcates off the trivial solution, the configuration has E =
n− 1 negative eigenvalues, as it can be shown by linear stability analysis. Maddocks
(1984) showed that as x(L) = 0, the beam can perform rigid body rotations around
(x, y) = (0, 0), corresponding to an unstable bifurcation, the secondary branches of
which do not lie in the α0, λ plane. (This is the reason why they do not appear in
figure 2: on these secondary branches the vertical force V (0) (cf. figure 1) does not
vanish.) This means that, as we pass this bifurcation point in each mode, the number
E of negative eigenvalues is increased by one. Since no further bifurcation occurs,
in the continuous model the nth primary branch has E = n negative eigenvalues as
λ→∞.

The initial count for the negative eigenvalues is identical in the discrete problem
(4.1)–(4.2), including the bifurcation at xN = 0 (cf. Domokos & Holmes 1993a), so we
have E = n on the nth primary branch. However, the λ→∞ limit is rather different.
As we saw in §5 a, each branch (including the primary ones) can be characterized
by a binary label BN of length N . The ‘0’ characters correspond to compressed
chain elements, the ‘1’ characters to the ones in tension. The number, E, of negative
eigenvalues on any branch in the λ→∞ limit is equal to the number of ‘0’ characters
in the corresponding binary string. Let us regard the first mode branch (n = 1) of
the structures with N = 4 and N = 5 links, respectively. Contemplation of figure 9
reveals that the B4 = {1111}, while B5 = {11011}. This means that in the λ → ∞
limit we have E4 = 0, E5 = 1.

However, as we discussed before, initially we had E4 = E5 = 1. From the mono-
tonicity of the primary branches (Domokos & Holmes 1993a) it follows that limit
points do not occur, the only kind of critical point that can change E4 is a a sec-
ondary bifurcation (cf. figure 8). The same cannot be claimed for the N = 5 case;
here E5 is the same in the limit. (We remark that this does not imply that E5
remains constant along the branch, however, we did not discover any necessary rea-
son for E5 to change. Conjecture 5.2 claims that the discovered necessary condition
is simultaneously a sufficient one.)

The generalization of this observation to the nth primary branch of the N -link
structure is purely geometrical. At the bifurcation point from the trivial equilibrium,
the nth primary branch consists of n segments of length N/n, separated by intersec-
tion points with the load line (not necessarily at joints), displaying n extrema in y.
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Figure 9. Global behaviour of the n = 1 branch for N = 4 and N = 5.

We have to count, how many midpoints of these segments coincide with hinges: those
segments will behave similarly to the N = 4 branch in figure 8; thus their number
is identical to the minimal change in EN as we move along the branch. As observed
before, this number is equal to bmin. This geometric count is formulated algebraically
in observation 5.1 with the aid of the function f(t). (cf. figure 5: 12 ∗ f( 1

12) = 1;
12 ∗ f( 2

12) = 2; 12 ∗ f( 3
12) = 3; 12 ∗ f( 4

12) = 0; 12 ∗ f( 5
12) = 1; 12 ∗ f( 6

12) = 6; etc.)
We remark that (as it follows from the argument) the number b refers to secondary

bifurcation in the [α0, λ] plane and does not include the rigid body rotation at xN = 0.
It seems worthwhile to describe this problem from the point of view of symmetry

and symmetry breaking (cf. Golubitsky & Schaeffer 1988). The original problem
(both discrete and continuous) has D2 symmetry in the physical [xy] configuration
space. At the primary pitchforks the D2 is factored by one of its subgroups: at
odd modes by the C2 (rotation), at even modes by the Z2 (reflection) subgroup.
As a consequence, the odd primary branches have Z2 symmetry, the even primary
branches have C2 symmetry. (For more detail see Domokos & Holmes 1993a). In
this subsection we dealt only with the first primary mode, so this has Z2 symmetry,
regardless of whether N is odd or even. Nevertheless, the N = 2k (even) cases exhibit
secondary pitchforks whereas the N = 2k + 1 (odd) cases never do so.

At this point it might appear that the reflection symmetry has little to do with
the difference between odd and even discretization. This is not the case; Gáspár &
Domokos (1989) investigate the behaviour of symmetrical models, i.e. non-uniform
discretizations that share the symmetry group of the continuous model. (The results
of the present paper are generalized for non-uniform discretizations in §4 a.) For the
first mode such discretizations are defined by li = lN−i+1. Gáspár & Domokos (1989)
point out that symmetric discretizations consist typically of odd number of links;
‘even’ models are non-generic. Symmetric discretizations are helpful in understand-
ing the transition from ‘even’ to ‘odd’ models of uniform discretization. Figure 10
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Figure 10. Bifurcation diagrams for the symmetric three-link model.

illustrates eight bifurcation diagrams from the one-parameter family of three-link
symmetrical discretizations. The first and last diagram correspond to the N = 2
and N = 3 uniform discretizations, respectively. The bifurcation behaviour and sta-
bility of this structure is described by Maddocks (1985) with analytical tools. The
diagrams of figure 10 are in accordance with his results, although he used different
parametrization for the links.

(e ) Concluding remarks
In this paper we studied special limits of Euler’s buckling problem and of its dis-

cretized version. The appearance of imperfect wave-like solutions in physical and
numerical experiments motivated our first conjecture, stating that the static image
of solitary waves can be obtained by an appropriately constructed limit of the dis-
cretized problem. These quasi-static waves are solutions of BVPs that admit the
homoclinic loop at arbitrary locations. We supported our conjecture by a plausible
argument: we proved that a larger and a smaller set can be equally reached as limits.

These limits sets proved to be very helpful in organising the complex bifurcational
structure of the discrete problem. In particular, we were able to assign individual
unique labels to all branches in the N -link problem in the form of integer strings of
length N . These labels open many interesting questions, e.g. they could be the basis
of accurate estimates on the number of parasitic solutions. Branches can be ordered
according to the parameter values where they emerge, or, according to their labels.
The relationship between these orderings seems to be a challenging problem. We also
defined binary labels, characterizing the stability at infinity. With the aid of these
labels we were able to answer an old question: why does the behaviour of models with
even and odd N differ? The construction of binary labels leads to the observation
that the limit of this spatially complex behaviour is an appealingly simple random
walk, or, conversely, spatial chaos in this BVP can be viewed as a perturbation of a
Markov process. We hope that beyond making our conjecture on wave-like solutions
plausible, the study of this simple mechanical example contributes to the better
understanding of the relationship between discrete and continuous structures, their
limits, and to the concepts relating chaotic and random behaviour.
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